A Pieri rule for skew shapes

نویسندگان

  • Sami H. Assaf
  • Peter R. W. McNamara
چکیده

The Pieri rule expresses the product of a Schur function and a single row Schur function in terms of Schur functions. We extend the classical Pieri rule by expressing the product of a skew Schur function and a single row Schur function in terms of skew Schur functions. Like the classical rule, our rule involves simple additions of boxes to the original skew shape. Our proof is purely combinatorial and extends the combinatorial proof of the classical case. Résumé. La règle de Pieri exprime le produit d’une fonction de Schur et de la fonction de Schur d’une seule ligne en termes de fonctions de Schur. Nous étendons la règle classique de Pieri en exprimant le produit d’un fonction gauche de Schur et de la fonction de Schur d’une ligne en termes de fonctions gauches de Schur. Comme la règle classique, notre règle implique l’ajout de cases à la forme gauche initiale. Notre preuve est purement combinatoire et étend celle du cas classique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operators on Compositions and Generalized Skew Pieri Rules

Using operators on compositions we develop further both the theory of quasisymmetric Schur functions and of noncommutative Schur functions. By establishing relations between these operators, we show that the posets of compositions arising from the right and left Pieri rules for noncommutative Schur functions can each be endowed with both the structure of dual graded graphs and dual filtered gra...

متن کامل

Skew quantum Murnaghan-Nakayama rule

In this extended abstract, we extend recent results of Assaf and McNamara, the skew Pieri rule and the skew Murnaghan-Nakayama rule, to a more general identity, which gives an elegant expansion of the product of a skew Schur function with a quantum power sum function in terms of skew Schur functions. We give two proofs, one completely bijective in the spirit of Assaf-McNamara’s original proof, ...

متن کامل

Skew Littlewood–Richardson Rules from Hopf Algebras

We use Hopf algebras to prove a version of the Littlewood–Richardson rule for skew Schur functions, which implies a conjecture of Assaf and McNamara. We also establish skew Littlewood–Richardson rules for Schur P and Q-functions and noncommutative ribbon Schur functions, as well as skew Pieri rules for k-Schur functions, dual k-Schur functions, and for the homology of the affine Grassmannian of...

متن کامل

Skew Pieri Rules for Hall–littlewood Functions

We produce skew Pieri Rules for Hall–Littlewood functions in the spirit of Assaf and McNamara [3]. The first two were conjectured by the first author [6]. The key ingredients in the proofs are a q-binomial identity for skew partitions and a Hopf algebraic identity that expands products of skew elements in terms of the coproduct and the antipode. Let Λ[t] denote the ring of symmetric functions o...

متن کامل

On the Littlewood-richardson Rule for Almost Skew-shapes

We describe combinatorially the coefficients occurring in the irreducible decomposition of the Weyl module associated with an almost skewshape belonging to the family J . The proof uses the fundamental exact sequence for almost skew-shapes to initiate an inductive procedure which ultimately reduces to the classical Littlewood-Richardson rule for skew partitions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2011